

Time-series,
Spring, 2026

Time Series Analysis and Forecasting

*Faculty of DS & AI
Spring semester, 2026*

Trong-Nghia Nguyen

Content

- About
- Group Requirements
- Environments
- Time-series concept with Python

Bio

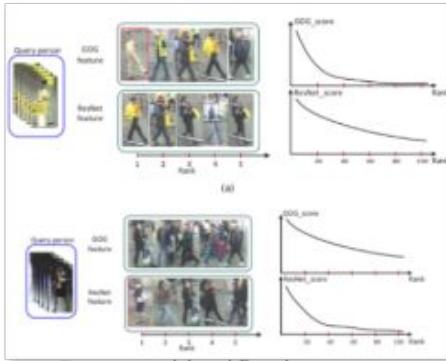
Website

Trong-Nghia Nguyen (PhD)
(1996)

2018, BS. at University of Science, Hue University

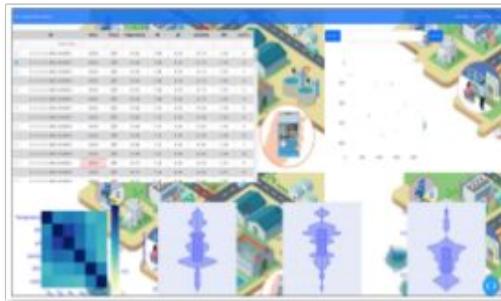
2021, Msc. at Hanoi University of Science and Technology

Present, Lecture at National Economics University

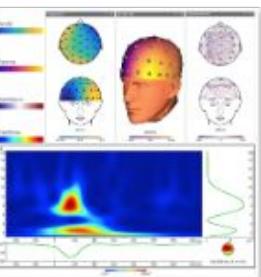


2025, PhD. at Chonnam National University, South Korea

Disciplines: Artificial Intelligence,
Computer Science, Information
Technology


Research

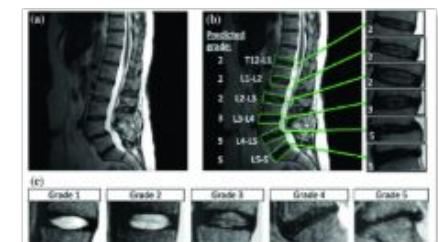
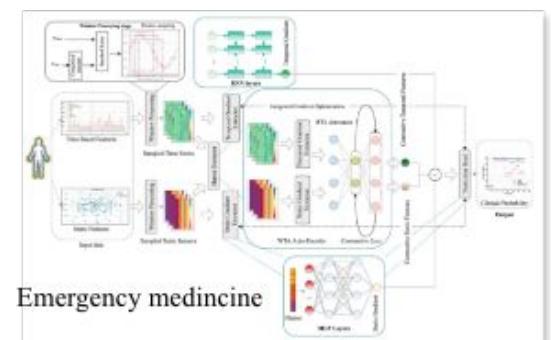
About



Person re-identification

Smart technology

Smart Manufacturing



On going

Brain EEG signal

Drug's molecular structure

Smart Healthcare

MRI - Pathology diagnostic

About

Course Overview

Course Website

- *Practical introduction to time series analysis & forecasting with Python*
- *Real-world applications in finance, economics, and healthcare*
- *Core statistical methods: ARIMA, SARIMA, exponential smoothing*
- *ML & DL extensions: tree-based models, LSTM, CNN*
- *Project-based learning with industry datasets*
- See [List of Topics](#)

About

Syllabus

Course Website

- Slides and reports could be made by LaTeX or .docx (or any) but should follow the **template. Incorrect template = Zero.**
- Every template for slides, reports, and poster could be found at [Student desk](#)
- All textbooks are available online.

Attendance

10%

The team's member presentation

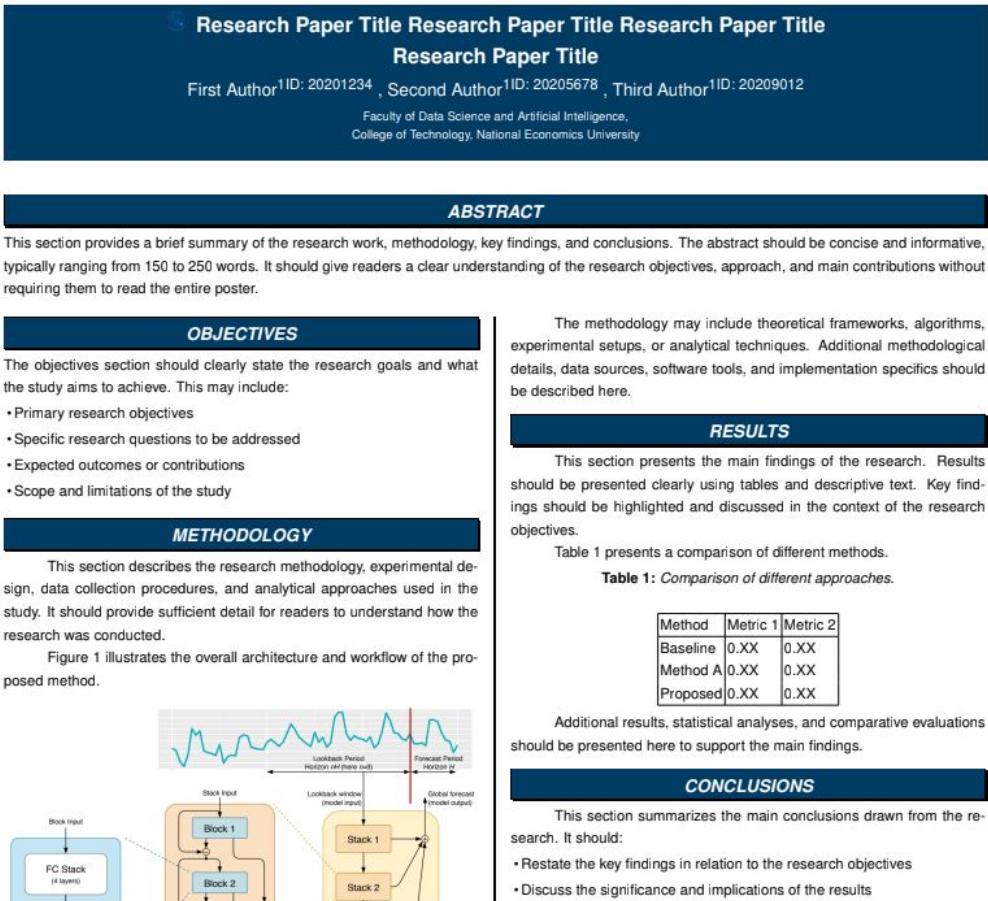
Midterm Baseline

30%

Report Poster + Presentation (Week 10)

Final Project

60%


Full project (paper) + presentation (Week 15)

About

Syllabus

Course Website

- All submissions except for source code must be submitted as a **.pdf file**.

Poster template

Group Requirements

Group working on weekly report

- Team formation: Groups of 1–4 students
- Dataset selection: 14 curated topics (finance, macro, health, climate, energy, etc.)
- All labs are project progress presentations.
- Midterm (Week 10): classical baseline (ARIMA/SARIMA)
- Final (Week 15): full project (classical + ML/DL)

Group Requirements

Group working on weekly report

- Weekly report: Just **update the slides** from last week; there's no need to create new slides.
- Midterm: **Presentation & submit poster.**
 - Midterm results should be a complete result of the baseline models.
- Final: Complete proposed method with **full report & complete slide.**

Group Requirements

Group working on weekly report

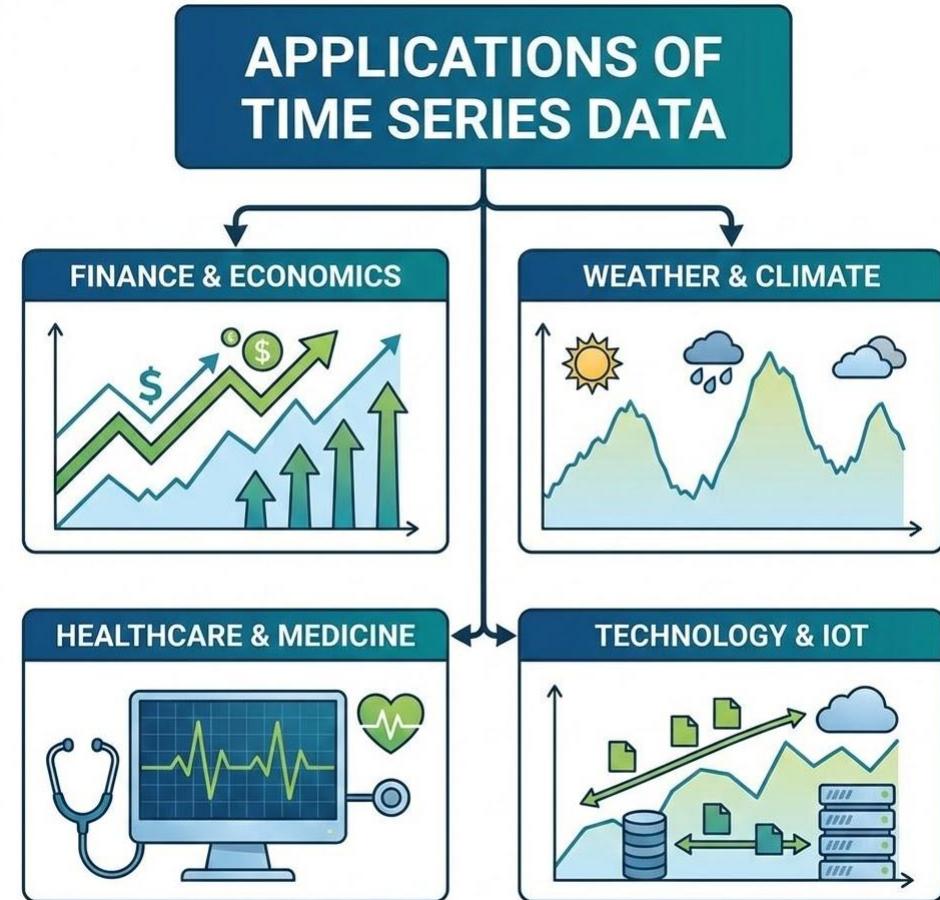
Topic Name

Progress Report

Group 1

Presenter: Tran A

Members: Le B, Nguyen Thi C, Dao Van D



Slides template

Time-series concept with Python

What is time-series

- Definition
 - A **sequence of observations** measured at successive **points in time**.
 - Ordered, temporal dependence between observations.
- Examples:
 - **Stock prices**: daily close price of AAPL or NVDA
 - **Economic indicators**: monthly unemployment, quarterly GDP
 - **Vital signs**: heart rate, blood pressure (ICU monitoring)
 - **Weather**: daily temperature, humidity (climate analysis)
 - **Energy**: hourly electricity demand, power consumption

Key Time Series Components - Trend

- **Trend:** The long-term movement of a time series, indicating a general direction (increasing, decreasing, or stable) over an extended period.
- Example: A company's stock price steadily increasing over several years.

Key Time Series Components - Seasonality

- **Seasonality:** Regular and repeating patterns within a fixed time period, such as a year, month, or week.
- Example: Retail sales consistently peaking in December each year.

Key Time Series Components - Cyclical

- **Cyclical**: Fluctuations or cycles that are not of a fixed period, often related to economic or business conditions, occurring over longer, irregular durations.
- Example: Multi-year business cycles of economic expansion and contraction.

Key Time Series Components - Irregularity (Noise)

- **Irregularity (Noise):** Random, unpredictable variations in a time series that do not follow a pattern. They are often caused by unforeseen events or measurement errors.
- Example: Daily fluctuations in a sensor's reading due to random noise.

Time-series concept with Python

Python Ecosystem for Time Series

- **NumPy**: numerical computing, arrays, vectorization
- **Pandas**: data manipulation, time-based indexing, resampling
- **Matplotlib / Seaborn**: visualization and plotting
- **Statsmodels**: ARIMA, SARIMA, decomposition, tests
- **Scikit-learn**: ML models, preprocessing, pipelines
- **TensorFlow / PyTorch**: deep learning (LSTM, CNN)

Environments

Anaconda/MiniConda and Conda Environment Setup Instructions

- **Download and Install:**
 - **Anaconda:** Download the full installer from the [Anaconda website](#). It includes Python, Conda, and a large suite of scientific packages.
 - **MiniConda:** Download the minimal installer from the Conda documentation page. It includes only Python and Conda, allowing you to install packages as needed.
 - Add conda to your PATH: `conda init`
- **Create a Conda Environment:**
 - Open your terminal or Anaconda Prompt.
 - Create a new environment with Python and necessary packages (e.g., `pandas`, `statsmodels` for time series) using the command:
`conda create --name timeseries_env python=3.10 pandas statsmodels jupyter`
 - Activate the new environment:
`conda activate timeseries_env`
- **Deactivate and Remove (Optional):**
 - Deactivate the environment: `conda deactivate`
 - Remove the environment: `conda remove --name timeseries_env --all`

Environments

Kaggle Setup and Dataset Loading

- **Register a Kaggle Account:**
 - Go to the [Kaggle website](#).
 - Sign up using your email, a Google account, or a Facebook account.
 - Complete your profile setup.
- **Use Kaggle Notebooks:**
 - Navigate to the "Notebooks" section on Kaggle.
 - Click "New Notebook" to create a coding environment.
 - Select your preferred language (Python or R) and notebook type (Notebook or Script).
- **Load Pre-existing Kaggle Datasets:**
 - Find the dataset you want to use on the Kaggle Datasets page.
 - Open your new or existing Kaggle Notebook.
 - In the right-hand panel, click "+ Add Data" and search for the dataset.
 - Click the dataset to add it; the necessary input path will be automatically configured in your notebook.

Thank you!