

Informed (Heuristic) Search Strategies

Faculty of DS & AI Autumn semester, 2025

Trong-Nghia Nguyen

Content

- Evaluation function
- Informed (Heuristic) Search
 - Best first search
 - o Beam search
 - Hill climbing search

Content

- Evaluation function
- Informed (Heuristic) Search
 - Best first search
 - Beam search
 - Hill climbing search

- Estimate function, evaluating the level of good/bad, the ability to reach the destination of each state.
- Based on experience.
- For a state u,:
 - o g(u) is the **cost** of going from the starting state (past information, **known**)
 - h(u) is the remaining cost to go to the goal (future information or heuristic, estimate). The smaller this value is the better.
 - o g(u) + h(u) is the **total cost** of going from the starting state to the goal through that state (common information, **estimate**). The **smaller** this value is the **better**.

- Can exploit only 1 or both evaluation information about the past and future
 - $\circ f(u) = g(u) + h(u)$
 - \circ f(u) = g(u)
 - \circ f(u) = h(u)
- Search techniques using the evaluation function h(u) are generally called heuristic search
- Optimal search techniques using the evaluation function f(u)=g(u)+h(u)
- The better the evaluation function (closer to reality), the more effective the search

Heuristic Function

Tic-Tac-Toe game

You are X. To calculate the heuristic (probability of winning), should evaluate:

- How many paths (rows, columns, diagonals) are there that X can win?
- A valid path must have at least 1 X and no O

⇒ chance to win (Big or small) ?

- Row 1: $X = O \rightarrow blocked by O \rightarrow eliminate$
- Row 2: _ X _ → no O → count 1
- Row 3: _ _ → no O → count 1
- Column 1: X _ _ → no O → count 1
- Column 2: _ X _ → no O → count 1
- Column 3: O _ _ → blocked by O → eliminate
- Diagonal 1: X X _ → no O → count 1
- Diagonal 2: O X _ → have O → eliminate

 \rightarrow Total: 5 valid paths \rightarrow h(u) = 5

Heuristic Function

• Tic-Tac-Toe game

You are X. To calculate the heuristic (probability of winning), should evaluate:

- How many paths (rows, columns, diagonals) are there that X can win?
- A valid path must have at least 1 X and no O

- Row 1: X _ O → blocked by O → eliminate
- Row 2: _ _ → no O → count 1
- Row 3: O _ _ → blocked by O → eliminate
- Column 1: X _ O → blocked by O → eliminate
- Column 2: _ _ → no O → count 1
- Column 3: O _ _ → blocked by O → eliminate
- Diagonal 1: X _ _ → no O → count 1
- Diagonal 2: O _ O → have O → eliminate

 \longrightarrow Total: 3 valid paths \rightarrow h(u) = 3

Heuristic Function

2	8	3
1	6	4
7		5

state u

1	2	3
4	5	6
7	8	

goal state

• 8-Puzzle game

h(u) ?

⇒ Shortest path ?

 \longrightarrow Total errors: 6 cells => h₁(u) = 6

Method 1: Calculate h₁(u) total number of cells that differ from the target state

Pos	u	Goal	Wrong?
(1,1)	2	1	<u> </u>
(1,2)	8	2	<u> </u>
(1,3)	3	3	×
(2,1)	1	4	
(2,2)	6	5	
(2,3)	4	6	
(3,1)	7	7	×
(3,2)	_	8	(not count _)
(3,3)	5	_	~

Heuristic Function

• 8-Puzzle game

h(u) ?

⇒ Shortest path ?

2	8	3
1	6	4
7		5

state u

1	2	3
4	5	6
7	8	

goal state

Method 2: Calculate h₂(u) — Total Manhattan Distance

Cell number	Pos (u)	Pos (goal)	Distance
1	(2,1)	(1,1)	1
2	(1,1)	(1,2)	1
3	(1,3)	(1,3)	0
4	(2,3)	(2,1)	2
5	(3,3)	(2,2)	2
6	(2,2)	(2,3)	1
7	(3,1)	(3,1)	0
8	(1,2)	(3,2)	2

$$\longrightarrow$$
 Total distance: 1 + 1 + 0 + 2 + 2 + 1 + 0 + 2 = 9 => $h_2(u)$ = 9

Compare h₁ and h₂

Heuristic	Definition	Meaning	Advantages	Limitations
h ₁	Number of tiles that are not in their goal position (ignores the blank)	A coarse estimate: counts how many tiles are "wrong"	Very simple, fast to compute	Too rough, cannot distinguish between tiles slightly misplaced vs. far away
h ₂	Sum of the Manhattan distances of each tile from its goal position (ignores the blank)	A more realistic estimate: how far each tile needs to move	More accurate, closer to the real cost, usually expands fewer states	Slightly more expensive to compute than h_1

10

1	2	3
4	5	6
7	8	

goal state

$$g(u) = 1$$
 state u

2		3
1	8	4
7	6	5

2	8	3
1	6	4
7		5

$$f_1(u) = g(u) + h_1(u)$$

$$f_2(u) = g(u) + h_2(u)$$

Compare h₁ and h₂

Expanded states at g=2

Move sequence	State at $g=2$	h_2	$f_2=2+h_2$
Up → Left	_ 2 3 / 1 8 4 / 7 6 5	8	10
Up → Right	2 3 _ / 1 8 4 / 7 6 5	10	12
Down → Left	2 8 3 / 1 6 4 / _ 7 5	10	12
Down → Right	2 8 3 / 1 6 4 / 7 5 _	8	10
Right → Up	28_/143/765	10	12
Right → Down	283/145/76_	8	10

 h_2 clearly distinguishes "better" states (closer to the goal) than h_1 , so in A* it is common to expand states with low f_2 first.

Mapping to searching problem

Traveler's problem: find the shortest path from a starting city to a destination city Evaluation function

- Past: g(u) = cost of traveling from starting city to city u
- Heuristic: h(u) = travel cost at vertex u.

13

Searching with evaluation function

- **Heuristic Search (Experience-Based Search):** uses the evaluation function f(u)=h(u)
 - > Best-First Search = Breadth-First Search + h(u)
 - > Hill-Climbing Search = Depth-First Search + h(u)
- **Optimal Search:** uses the evaluation function f(u)=g(u)+h(u)
 - \rightarrow A^* = Best-First Search + f(u)
 - >> Branch and Bound = Hill-Climbing Search + f(u)

Content

- Evaluation function
- Informed (Heuristic) Search
 - Best first search
 - o Beam search
 - Hill climbing search

Best first search (BestFS)

- **BestFS** = A **BFS** guided by the evaluation **function h(u)** (this mean f(u) = h(u)), in this case, could be call as Greedy best-first search (GBFS).
- **OPEN list**: set of nodes to be expanded, sorted in ascending order of the evaluation function.
- At each step:
 - Select node uuu in OPEN with the smallest evaluation value.
 - Insert neighbors of u into OPEN and keep it sorted by the evaluation function.

```
procedure Best_First_Search
Begin

1. Initialize list OPEN = {initial state};

2. while true do
        2.1 if (OPEN is empty) then {search
failed; stop};

        2.2 Remove state u from the beginning of
the OPEN list;

        2.3 if u is the end state then {search
succeeded; stop};

        2.4 Insert adjacent vertices of u into
```

OPEN so that OPEN is sorted in the

g;

end

ascending order of the evaluation function

16

Best first search (BestFS)

Find the shortest path from $A \rightarrow H$

The value associated with each node is the heuristic evaluation h(u)

Best first search (BestFS)

Step	u	Egde(u)	OPEN
0			A ³⁰

Best first search (BestFS)

Step	u	Egde(u)	OPEN
0			A ³⁰
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵

Best first search (BestFS)

Step	u	Edge(u)	OPEN
0			A ³⁰
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	B ²⁰ ,D ²⁵ ,

20

Best first search (BestFS)

Step	u	Edge(u)	OPEN
0			A ³⁰
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	E ¹³ ,F ¹⁵ ,B ²⁰ ,D ²⁵

21

Intro to AI Trong-Nghia Nguyen

Best first search (BestFS)

Step	u	Edge(u)	OPEN
0			A ³⁰
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	€ ¹³ ,F ¹⁵ ,B ²⁰ ,D ^{25,}
3	E ¹³	G ¹⁸ , B ²⁰ , C ¹⁰	F ¹⁵ ,B ²⁰ ,D ²⁵

Intro to AI Trong-Nghia Nguyen

Best first search (BestFS)

Step	u	Edge(u)	OPEN	
0			A ³⁰	
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵	
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	E ¹³ ,F ¹⁵ ,B ²⁰ ,D ²⁵ ,	
3	E ¹³	G ¹⁸ , B ²⁰ , C ¹⁰	F^{15} , G^{18} , B^{20} , D^{25}	
4	F ¹⁵		G ¹⁸ ,B ²⁰ ,D ²⁵	

Best first search (BestFS)

Step	u	Edge(u)	OPEN
0			A ³⁰
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	E ¹³ ,F ¹⁵ ,B ²⁰ ,D ²⁵ ,
3	E ¹³	G ¹⁸ , B ²⁰ , C ¹⁰	F^{15} , G^{18} , B^{20} , D^{25}
4	F ¹⁵		G ¹⁸ ,B ²⁰ ,D ²⁵

24

Best first search (BestFS)

Step	u	Edge(u)	OPEN	
0			A ³⁰	
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ ,D ²⁵	
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	E ¹³ ,F ¹⁵ ,B ²⁰ ,D ²⁵ ,	
3	E ¹³	G ¹⁸ , B ²⁰ , C ¹⁰	F ¹⁵ , G ¹⁸ ,B ²⁰ ,D ²⁵	
4	F ¹⁵	G ¹⁸ , C ¹⁰	G ¹⁸ ,B ²⁰ ,D ²⁵	
5	G ¹⁸		B ²⁰ ,D ²⁵	

25

Intro to AI Trong-Nghia Nguyen

Best first search (BestFS)

Step	U	Edge(u)	OPEN	
0			A ³⁰	
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ , D ²⁵	
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	E ¹³ ,F ¹⁵ ,B ²⁰ ,D ²⁵ ,	
3	E ¹³	G ¹⁸ , B ²⁰ , C ¹⁰	F ¹⁵ , G ¹⁸ ,B ²⁰ ,D ²⁵	
4	F ¹⁵	G ¹⁸ , C ¹⁰	G ¹⁸ ,B ²⁰ ,D ²⁵	
5	G ¹⁸	H ⁰ , E ¹³ ,F ¹⁵	H^0 , B^{20} , D^{25}	

26

Intro to AI Trong-Nghia Nguyen

Best first search (BestFS)

Step	u	Edge(u)	OPEN
0			A ³⁰
1	A ³⁰	B ²⁰ ,C ¹⁰ ,D ²⁵	C ¹⁰ , B ²⁰ , D ²⁵
2	C ¹⁰	A ³⁰ , E ¹³ ,F ¹⁵	E ¹³ ,F ¹⁵ ,B ²⁰ ,D ²⁵
3	E ¹³	G ¹⁸ , B ²⁰ , C ¹⁰	F ¹⁵ , G ¹⁸ ,B ²⁰ ,D ²⁵
4	F ¹⁵	G ¹⁸ , C ¹⁰	G^{18} , B^{20} , D^{25}
5	G ¹⁸	H ⁰ , E ¹³ ,F ¹⁵	₩ ⁰ ,B ²⁰ ,D ²⁵
6	$H^0 \equiv$		B ²⁰ ,D ²⁵

A-C-E-G-H

Beam Search

- Similar to Best-First Search
- But it restricts the number of nodes expanded at each depth
- Main Idea:
 - Instead of expanding all successors of a node, Beam search only keeps the k best successors (according to heuristic value h(u)) at the same depth.
 - Parameter k = beam width

Best-First Search (BFS)	Beam Search
Expand node <i>u</i> , insert all successors <i>v</i> into	Expand node u , insert only some successors v so that the total number of
OPEN	nodes at the same depth in OPEN is $\leq k$

Hill climbing

- Depth-first search under the direction of the evaluation function h(u) (remaining cost to reach the goal)
- At each step of the search:
 - Choose vertex u at the beginning of the OPEN list to traverse
 - After traversing vertex u:
 - Sort the list of adjacent vertices of u in the increasing order of the evaluation function
 - Insert this adjacency list at the beginning of OPEN

Procedure Hill_Climbing_Search begin 1. Initialize Open = {initial state}; 2. while true do 2.1 If (Open is empty) then {failure message; stop}; 2.2 Remove state u from the beginning of the list Open; 2.3 If (u is the end state) then {success message; stop}; 2.4 for (each v adjacent to u) do add v to the list L; 2.5 Sort the list L in ascending order of the evaluation function; 2.6 Insert L at the beginning of OPEN;

end

Hill climbing

Step	u	Edge(u)	L	Open
0				A30
1	A30	B20, C10, D25	C10, B20, D25	C10, B20, D25
2	C10	A30, E13, F15	E13, F15	E13, F15, B20, D25
3	E13	B20, C10, G18	G18	G18, F15, B20, D25
4	G18	E13, F15, H0	H0	H0, F15, B20, D25
5	H0			

A-C-E-G-H

Thank you!

You're now ready to explore the exciting world of Al!