Creating Effective and Insightful Visualizations
Quickly identify patterns and outliers
Tell compelling data stories
Support data-driven choices
Foundation library for creating static, animated, and interactive visualizations
pip install matplotlib
Statistical data visualization built on Matplotlib with beautiful default styles
pip install seaborn
Interactive visualizations with zoom, pan, and hover tooltips
pip install plotly
Quick plotting directly from DataFrames
df.plot()
Compare categories
plt.bar(x, y)
Show trends over time
plt.plot(x, y)
Explore relationships
plt.scatter(x, y)
Show distributions
plt.boxplot(data)
Visualize correlations
sns.heatmap(data)
Show proportions
plt.pie(sizes)
Choose the right chart type for your data and message
Use clear labels and titles to guide interpretation
Keep it simple - avoid chart junk and unnecessary decorations
Use color purposefully - ensure accessibility and meaning
Consider your audience - technical vs. general public
Objective: Create a comprehensive visualization dashboard for healthcare data
Tasks:
Use Cursor AI to help debug code and generate visualization templates